2025/12/10 07:33 1/5 Freifunk Offloader

IN BEARBEITUNG, sehr sehr viele Fehler

Freifunk Offloader

Version:	1	
Date:	29/05/2018	
Info:	noch in Testphase	

Genau so wie beim ersten Freifunk Offloader Freifunk Offloader (Outdoor), der auf einem Zotac ZBOX CI 323 nano aufbaut, soll diese Offloader version auch im Aussenbereich einsetzbar sein. Allerdings soll diese Version etwas kostengünstiger und denoch nicht leistungsarmer sein.

Hardwarevergleich

	APU 2C4	CI323 nano
СРИ	AMD Embedded G series GX-412TC, 1 GHz quad Jaguar core	Intel N3150 quad-core 1.6GHz
GPU	Not applicable	Intel HD Graphics
RAM	4 GB DDR3-1333 DRAM	4 GB DDR3L-1600 SO-DIMM (8GB maximum)
LAN	3 x Intel i210AT Gigabit Ethernet	2 x Gigabit Ethernet
WLAN	Not applicable	802.11ac
USB	2 x USB 3.0 (external) + 2 x USB 2.0 (internal)	1 x USB 3.0 Type C, 2 x USB 3.0, 2 x USB 2.0
SD Karte	1 x internal sdhci	externer 3-in-1 (SD/SDHC/SDXC)
SSD	1 x internal connector	1 x 2.5 inch SATA SSD/HDD slot
mSATA	2 x mSATA PCle	Not applicable
Zusatz Anschlüsse	2 x PCle	HDMI, DisplayPort, VGA
Verbrauch	12 W maximum	40 W
Preis	215 € total	220 € PC + 30 € RAM + 40 € SSD

Warum die APU und nicht der Barebone?

Schaut mann sich die Resourcen an, so hat der Zotac PC die Nase ganz klar vorn. Allerdings muss man die ganze Sachen realistich betrachten. Um das VPN zu berechnen reichen die Resourcen, CPU und RAM, der APU vollkommen aus. Die APU schafft locker 50MB/s, für einen kleinen Freifunk Offloader ist das mehr als ausreichend. Sollte man eine höhere Datenrate brauchen, ist es sinnvoller sein Freifunknetz entsprechend zu konfigurieren und eine 2ten Offloader zu verwenden. Der Grund dafür ist ganz klar. Der Offloader hat den Internet Uplink und muss deshalp auch das VPN berechnen. Sollte es nun nur einen Offloader geben und dessen Uplink ausfällt, so muss ein kleiner Router dies übernehmen. Somit könnte es dann bei einer Datenrate von 12 MB/s bleiben. Hat man nun aber einen 2ten Offloader kann dieser das ganz Netz weiterhin versorgen und man hat immer noch die 50 MB/s

Die WLAN Verbindung des Zotac PCs kann mann nicht im Freifunkmodus benutzen, also ist sie sinnlos. Das Selbe gilt für die Grafikanschlüsse.

Eine SSD ist schnell, ungefähr 550MB/s, aber eine mSATA ist weit aus schneller, +2GB/s.

Die APU hat einen Ethernetport mehr, was für einen Offloader ein grosser Vorteil ist.

Beim Verbrauch hat die APU ganz klar die Nase vorn mit 12W anstatt von 40W.

Preislich ist die APU auch ganz klar der Sieger.

Firmware

Da es sich hier um eine normale CPU, kein ARM, verwenden wir das X86-64 Image. Dieses findet man hier link to FF firmware.

Betriebsarten

Es gibt verschiedene Arten um den Offloader zu Betreiben und jede hat Vor- und Nachteile

SD Karte

SD Karten bekommt man heute nachgeschmissen und sie kosten fast nichts mehr. Ein weiterer Vorteil der SD Karte ist die Installation des Images. Mit einem Tool wie Etcher, wird sogar dies extrem leicht.

Ein Nachteil der SD Karte ist einfach, dass sie nicht für diese Art von AUfgaben bestens geeignet sind. Die Lebensdauer einer SD Karte wird mit dem Offloader stark verkürzt. Ein weiters Nachteil, das auch die Leistung des Offloaders beeinträchtigs, ist, sollten es nicht mindestens ein Klasse 10 SD Karte sein, so wird der ganze Offloader langsam. Beispiel Mein alter Skynet Freifunk Offloader basierte auf dem Zotac Cl323 nano und läuft mit einer Klasse 10 SD Karte. Das Hochfahren des Offloaders dauerte aber schon mal 30 Minuten ansich.

Diese Betriebsart würde ich nur zum Tesetn empfehlen.

USB Stick

USB Sticks sind eine Mischung aus SD Karten und SSDs, sehr günstig und denoch sehr schnell. Ein weiterers Vorteil des USB Sticks ist die Installation des Images. Mit einem Tool wie Etcher, wird sogar dies extrem leicht.

Da die APU 2C4 2 USB 3.0 Anschlüsse bsitzt, ist Geschwindigkeit nicht das Problem. Allerdings besteht die Gefahr, dass der USB STick ungewollt abbrechen könnte.

SATA SSD

Der SATAanschluss kann für eine SSD benutzt werden. Allerdings ist der Einbau in die APU sehr schwierig und auch nicht zu empfehlen, da man die PCIe-anschlüsse opfern muss.

https://wiki.c3l.lu/ Printed on 2025/12/10 07:33

2025/12/10 07:33 3/5 Freifunk Offloader

mSATA SSD

Die mSATA SSD ist definitif die schnellste und auch die bequemste Art und weise den Offloader zu betreiben. Der Einbau ist kinderleicht, er liegt intern, es bietet die höchste Geschwindigkeit von +2 GB/s und man bekommt eine mSATA im APU 2C4 Bundle gleich mit.

Installation

Sollten man die APU über SD Karte oder USB Stick betreiben wollen, so muss man nur das X86-64 Image daruaf flashen und die APU damit booten. Alles Andere ist wie bei jedem Anderem Freifunk Node.

Für alle anderen bitte weiter lesen.

Benötigt wird:

- Die APU
- 2 leere USB Sticks
- Das Freifunk Image für X86.64
- Ein LAN Kabel
- Ein USB auf Seriel Konsole Kabel
- Ein Null Modem Kabel
- Einen funktionierenden PC
- Voyage Linux Image
- Geduld

Der erste Schritt besteht darin einen bootfähigen USB Stick mit dem Voyage Linux Image zu erstellen.

Schritt 2 besteht darin, das FF Image einfach auf den 2ten USB Stick zu kopieren. Wichtig die Image datei muss in entzippter Form auf dem USB Stick liegen.

Nun bereiten wir unseren PC vor. Zurest muss ein Konsolen Emulator installiert werden der mit der Serielen Schnittstelle der APU reden kann. Ich habe mich für picocom entschieden. Mit apt ist er auch schnell auf dem Ubuntu Laptop installier

```
sudo apt-get install picocom
```

Jetzt bereiten wir unsere serielle Verbindung vor. APU noch nicht mit Strom versorgen. Voyage Linux Stick in die APU stecken. APU mit den Kabeln an den PC verbinden. Folgenden code in einem Terminal ausführen.

```
sudo -s
picocom -b 115200 /dev/ttyUSB0
```

Damit wird das Terminal zu einem seriellen Terminal, das die serielle Kommunikation zwischen PC und APU anzeigt.

115299 ist die Baudrate. Diese ist sehr wichtig, da sie entscheidet ob wir komische Zeichen angezeigt bekommen oder einen verständlichen Text.

/dev/ttyUSB0 ist der USB port unseres Kabel.

Bei Bedarf müssen diese Variablen angepasst werden. Es sollte aber nicht der Fall sein bei einer APU2C4.

Da nun unser Terminal bereit ist, können wir die APU booten lassen. Das Booten kann einige Minuten Dauern. Sollten jetzt denoch komische Zeichen auftauchen, dann liegt es daran, dass die Baudrate nicht stimmt. Anderen Baudraten die noch passen könnten sind:

- 9600
- 38400

Nach dem die APU gebootet ist, mussen wir uns einloggen.

login: root

password: voyage

Dies sind standart Daten und sollten bei anderen Verwendungen von Voyage Linux geändert werden. Da wir aber Voyage Linux nur zum installieren des eigentlichen Betriebssystems verwenden, überspringen wir diesen Punkt.

Da wir jetzt eingeloggt sind geht es mit der eigentlichen Arbeit erst los. Was jetzt ansteht ist folgendes:

- Herausfinden was unsere mSATA ist und was ein USB Stick
- Mount Punkt für den USB Stick erstellen
- USB Stick mounten
- mSATA mit Freifunk Firmware flashen

Erstmal unseren zweiten USB Stick in die APU stecken, bis 10 zählen und Enter drücken.

Dann folgenden befehl benutzen:

lsblk

Damit finden wir heraus was wo gemounted ist. Normalerweise ist sdb1 auf / gemounted. Das ist dann unser Voyage Linux Sick, den fassen wir nicht an. Sollte sich der / Mount Punkt nicht bei sdb sonder sda oder sdc befinden, dann ist das nicht weiter schlimm. Es geht nur darum rauszufinden wo der Mount Punkt / ist, da wir diesen USB Stick nachher nicht flashen dürfen.

Nun kommt der folgende Befehl zum Einsatz

dmesg

Benutzt man diesen Befehl, so gibt das Termianl erstmal jede Menge Infos heraus, die einen Erschalgen können. Aber keine Panik, was wir suchen steht ganz klar und einfach zusammen gefasst in den ganzen Berg von Informationen drin.

Da wir wissen wo unser wo unser Mount punkt / ist, normalerweise sdb, suchen wir jetzt einfach nach sda und sdc. einer der beiden sollte die Info haben ATA , das ist unsere mSATA Festplatte. Folglich ist der Andere der 2te USb Stick.

https://wiki.c3l.lu/ Printed on 2025/12/10 07:33

2025/12/10 07:33 5/5 Freifunk Offloader

Die mSATA Festplatte ist normalerweise sda und der 2te USB Stick sdc.

jetzt erstellen wir einen Mount Punkt für unseren 2ten USB Stick und mounten ihn anschliessend.

```
cd /media
mkdir USB
sudo mount /dev/sdc /USB
```

Überprüfen wir kurz ob jetzt auch alles richtig ist.

```
cd USB
ls
```

Solten wir jetzt unsere Freifunk Firmware sehen, somit ist alles in Ordnung. Sollte dass nicht der Fall sein, kein Problm.

```
cd /media
sudo umount /dev/sdc
sudo mount /dev/sda /USB
cd /USB
ls
```

Jetzt haben wir die Freifunk Firmware bereit zum flashen der mSATA.

Mit folgenden beiden Befehlen flshen wir nun unsere mSATA mit der Freifunk Firmware.

```
dd bs=4M if="name_der_FF_firmware".img of=/dev/sda conv=fsync
```

2 Minuten später haben wir jetzt einen Freifunk Offloader auf APU 2C4 basis.

Beim nächsten booten wird sich der Offloader wie ein normaler FreiFunk Router verhalten und man kann ihn auch genau so konfigurieren.

From:

https://wiki.c3l.lu/ - Chaos Computer Club Lëtzebuerg

Permanent link:

https://wiki.c3l.lu/doku.php?id=de:projects:freifunk:apu2c4offloader&rev=1527850312

Last update: 2018/06/01 12:51

