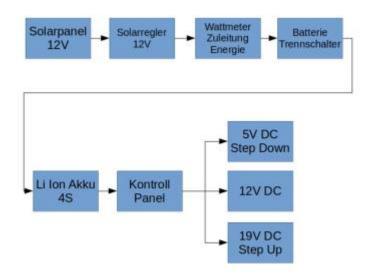
2025/11/21 12:44 1/3 Power HIVE

Power HIVE



Name	Power HIVE
Description	Solar Energie speichern um Smartphone und Notebooks zu laden.
Status	Planning
Contact	orimpe
Participants	orimpe, fantawams
Repository	Power Hive

Einkaufsliste

- Portable 100W Folding Solar Panel 12V
- LCD Voltage Watt Power Meter
- Ladesteckdose 12V
- Aviation Connector
- 5 Gang Schaltpanel 12V
- Mini Batterie Trennschalter
- DC DC Stepup Konverter 100W

Funktionsweise

Mittels Solar Panel (oder Windrad) wird Energie gesammelt und über den Solarregler (für 12V) weitergeleitet.

Ein Wattmeter misst dabei die gewonnene Energie die an den Li-Ion Akku über eine BMS eingespeist wird.

Das Kontrollpanel verfügt über 12V Ausgang, LED Spannungsanzeige und mittels Kippschalter werden weitere Spannungsausgänge 5V und 19V mittels DC Step down bzw DC DC Step up eingeschaltet. (Die gewünschten Spannungen können fein justiert werden)

Li-Ion Akku

Der Akku wird aus alten Notebook Akkus recycelt und besteht aus 4 Zellen (4S)

- 3.7V * 4S = 14.8V
- Die einzelnen 18650 Zellen haben ca 2500mA
- Die Kapazität des Verbundes ist noch unbekannt

Vorgehensweise

- 1. Die einzelne Lilon Zellen ausbauen und säubern
- 2. Initiale Spannung dokumentieren
- 3. Innenwiederstand messen und dokumentieren
- 4. Laden, Spannung und Kapazität messen & dokumentieren
- 5. 30 Tage einlagern und den Spannungsabfall messen. (alles ab 0,2V ist nicht optimal)
- 6. Zellen einordnen und zu größeren Zellen (4 in Serie und xx in parallel) verlöten
- 7. An das BMS anschließen
- 8. Ab hier kann der Akku als ganzes getestet werden

Zellen Test

Zum Testen der Zellen benötigt man folgendes:

1. gesäuberte Lilon Tellen

https://wiki.c3l.lu/ Printed on 2025/11/21 12:44

2025/11/21 12:44 3/3 Power HIVE

1. Etwas um die Zellen sicher einlagern zu können

1. Ein Multimeter oder Voltmeter

1. Ein Zellen Test gerät, wir verwenden das BT C3100 von OPUS

Wie in der Vorgehensweise beschrieben, wird zu erst die initial Spannung der Zellen, mit hilfe des Multimeters gemessen und dokumentiert

Dannach wird unser Zellen Testgerät benutz, um die Zellen zu laden. Dafür wird die Option Refresh verwenden, um die Zellen mehrmals zu be-und endladen. Ist dies vollendet, erscheind auf dem Display FULL. Jetzt kann man direkt die Kapazität und den Innenwiderstand messen und dokumentieren.

Vor dem 30-tägigen Einlagern, wird nochmals die Spannung mit dem Multimeter gemessen und dokumentiert. Nach den 30 Tagen wird dann wiedermals die Spannung gemessen und dokumentiert.

Nützliche Links

https://www.wolke101.de/akku-innenwiderstand/ zum Innenwiederstand messen

From:

https://wiki.c3l.lu/ - Chaos Computer Club Lëtzebuerg

Permanent link:

https://wiki.c3l.lu/doku.php?id=de:projects:hardware:power_hive&rev=1567493053

Last update: 2019/09/03 08:44

